Received: March 11, 1983; accepted: April 9, 1983

Reactions of N-Pentafluorosulfanylurethanes and Thiolurethanes with Phosphorus Pentachloride

JOSEPH S. THRASHER* and ALAN F. CLIFFORD

Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Va. 24061 (U.S.A.)

SUMMARY

Urethanes of the type $SF_5NHC(0)OR$ react with PCl_5 to give primarily SF_5NCO . In only one case, where $R=C_6H_5$, was any evidence for an imine product observed. The corresponding reactions of $SF_5NHC(0)SR$ compounds give both SF_5NCO and the imine product. The new compounds $SF_5N=C(C1)SCH_3$ and $SF_5N=C(C1)SC_6H_5$ were identified by IR, NMR, and mass spectrometry.

INTRODUCTION

In studying the reactions between various halo-sulfonyl urethanes and PCl $_5$ [1], Roesky found that the corresponding sulfonylchloroimines could be isolated in varying yields. Contrary to his results, we recently found that reaction of SF $_5$ NHC(0)OCH $_3$ with PCl $_5$ gave only the isocyanate, SF $_5$ NCO [2]. We have now studied this reaction with other N-pentafluorosulfanylurethanes and thiolurethanes and have found several systems where both reaction pathways are followed.

$$\begin{split} & \operatorname{FSO_2NHC}(0)\operatorname{OCH_3} + \operatorname{PCl_5} \longrightarrow & \operatorname{FSO_2N=C}(\operatorname{Cl})\operatorname{OCH_3} + \operatorname{HCl} + \operatorname{POCl_3} \\ & \operatorname{SF_5NHC}(0)\operatorname{OCH_3} + \operatorname{PCl_5} \longrightarrow & \operatorname{SF_5NCO} + \operatorname{HCl} + \operatorname{CH_3Cl} + \operatorname{POCl_3} \\ \end{split}$$

The reaction of $\mathrm{SF_5NHC}(0)\mathrm{OC_6H_5}$ [3] with PCl $_5$ gave evidence for the formation of the imine $\mathrm{SF_5N=C(Cl)OC_6H_5}$ [2], but again the major product was $\mathrm{SF_5NCO}$. The low yield of material, which was stopped in a -20°C

^{*}Current address: Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstraße 34-36, 1000 Berlin 33.

TABLE 1 ${\it Reactions~of~SF_5NHC(0)XR~(X=0,S)~compounds~with~PC1_5}^a$

XR(amt,mmol)/PC1 ₅	Conditions ^b	Products(amt,mmo1) ^C
OCH ₃ (3.8)/(5)	3 days at 60-70 ⁰ C	SF ₅ NCO, HC1(2.5), CH ₃ C1, POC1 ₃
OCH ₂ CH ₂ O (5.0)/(15)	5 days at 70-80 ^o C	SF ₅ NCO(5), HC1(3), POC1 ₃ , C1CH ₂ CH ₂ C1, C1 ₂ CHCH ₂ C1
oc ₆ H ₅ (4.4)/(4.4)	33 h at 60 ⁰ C	SF_5NCO and $HCl(7 total)$, $POCl_3$, C_6H_5Cl , $C_6H_4Cl_2$, $SF_5N=C(Cl)OC_6H_5$
SCH ₃ (3.46)/(3.5)	33 h at 60 ⁰ C	HC1 and $SiF_4(3.2 \text{ total})$, SF_5NC0 and $POF_3(0.9 \text{ total})$, POF_2C1 , CH_3SSCH_3 and other poly(methylsulfides), $SF_5N=C(C1)SCH_3(0.3)$
SC ₆ H ₅ (3.6)/(5)	4 h at 60-70 ^o C	HC1 and $SiF_4(2.5 \text{ total})$, SF_5NC0 and $POF_3(2.5 \text{ total})$, C_6H_5C1 , $POC1_3$, $C_6H_5SSC_6H_5$, $SF_5N=C(C1)SC_6H_5(0.4)$

 $^{^{\}rm a}{\rm Gas}$ chromatography-mass spectrometry (utilizing an SP-1000 column) was used along with IR and NMR spectroscopy to identify components of the product mixtures.

 $^{^{\}rm b}\!$ All reactions were carried out in glass reaction cylinders using ${\rm CCl}_4$ as the solvent.

 $^{^{\}mathrm{c}}\mathrm{Amounts}$ were not determined in all cases.

trap during vacuum fractionation, was found to be a mixture of $SF_5N=C(C1)0C_6H_5$, C_6H_5C1 , and $C_6H_4C1_2$. As with $SF_5NHC(0)0CH_3$, the reaction with $[SF_5NHC(0)0CH_2\}_2$ [3] led strictly to the isocyanate and gave no evidence for the formation of $[SF_5N=C(C1)0CH_2\}_2$. However, both $SF_5NHC(0)SCH_3$ and $SF_5NHC(0)SC_6H_5$ [3] gave approximately 10% yield of the corresponding chloroimine when reacted with $PC1_5$. The new chloroimines were characterized by infrared, NMR, and mass spectrometry and were found to be extremely air sensitive when compared to the marked stability of other known N-pentafluorosulfanylchloroimines [2,4].

SF₅N=C(C1)SCH₃ (nc) IR (gas): 2945 (w), 1625 (m) [ν (N=C)], 945 (m), 898 (s), 872 (vs), 797 (vs), 770 (vs), 721 (m), 594 (vs), 545 (vs) cm⁻¹; ¹H NMR: 6 (SCH₃) \sim 2.5 (s); ¹⁹F NMR: 6 (SF) 75.7 (m), 6 (SF₄) 66.6 (d of m) (1 J_{SF-SF₄} = 156.0 Hz); mass spectrum (70 eV) m/e (rel intensity): 237, 235 M⁺ (2.5, 6.4), 200 [M-C1]⁺ (39.7), 190, 188 [M-SCH₃]⁺ (3.1, 8,3), 127 [SF₅]⁺ (100.0), 110, 108 [M-SF₅]⁺ (8.9, 25.9), and smaller fragments.

 $SF_5N=C(C1)SC_6H_5 \ (nc) \ IR \ (capillary film): \ 3070 \ (m), \ 1640 \ (s)$ $[\nu(N=C)], \ 1600 \ (sb), \ 1497 \ (m), \ 1467 \ (m), \ 1435 \ (m), \ 1365 \ (m), \ 1263 \ (m),$ $1210 \ (m), \ 1065 \ (m), \ 915 \ (s), \ 870 \ (vsb), \ 840 \ (vsb), \ 745 \ (s), \ 680 \ (m),$ $660 \ (m), \ 580 \ (vs) \ cm^{-1}; \ ^1H \ NMR: \ ^8(C_6H_5) \ ^7.50 \ (bm); \ ^{19}F \ NMR: \ ^8(SF)$ $77.2 \ (m), \ ^8(SF_4) \ 66.8 \ (d \ of \ m) \ (^{1}_{3}SF-SF_4 \ = \ 156.4 \ Hz); \ mass \ spectrum$ $(70 \ eV) \ m/e \ (rel \ intensity): \ 299, \ 297 \ M^+ \ (4.6, \ 10.8), \ 262 \ [M-C1]^+$ $(16.7), \ 190, \ 188 \ [M-SC_6H_5]^+ \ (7.5, \ 20.8), \ 172, \ 170 \ [M-SF_5]^+ \ (32.5, \ 100.0),$ $135 \ [C_6H_5SCN]^+ \ (87.5), \ 127 \ [SF_5]^+ \ (66.7), \ 109 \ [C_6H_5S]^+ \ (95.8), \ and \ smaller$ fragments.

ACKNOWLEDGEMENT

We would like to thank Mr. Kim Harich for his assistance with g.c.-m.s. analyses.

REFERENCES

- H.W. Roesky, Angew. Chem., <u>81</u> (1969) 119; Angew. Chem. Int. Ed. Engl., 8 (1969) 136.
- J.S. Thrasher and A.F. Clifford, J. Fluorine Chem., <u>19</u> (1982) 411.

- 3 a) J.L. Howell, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 1978.
 - b) J.S. Thrasher, J.L. Howell, and A.F. Clifford in preparation.
- 4 J.S. Thrasher, J.L. Howell, and A.F. Clifford, Inorg. Chem., 21 (1982) 1616.